Adaptive Frequency-domain Regularization for Sparse-data Tomography

نویسندگان

  • MARTTI KALKE
  • SAMULI SILTANEN
  • Richard L. Webber
چکیده

A novel reconstruction technique, called Wiener Filtered Reconstruction Technique (WIRT), for sparse-data tomographic imaging is introduced. This six-step method applies a spatially varying constrained leastsquares filter combined with a regularization method based on total variation. The WIRT reconstruction is implemented in the frequency domain, where the information based on measurements and regularization can be treated separately. The algorithm applies regularization selectively in the frequency regions where the frequency component values cannot be defined by the measurements. This leads to computational benefits when compared to conventional iterative reconstruction methods such as algebraic reconstruction technique (ART). Both qualitative and quantitative comparisons against state-of-theart methods suggest that WIRT is a promising reconstruction algorithm for sparse-data imaging regimes, especially with higher noise levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatially adaptive ltering as regularization in inverse imaging: compressive sensing, super-resolution and upsampling

1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.2 Iterative …ltering as regularization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 1.2.1 Spectral decomposition of the operator : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 1.2.2 Non-local transform do...

متن کامل

Sparse Regularization-Based Reconstruction for Bioluminescence Tomography Using a Multilevel Adaptive Finite Element Method

Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes ...

متن کامل

Projected Nesterov's Proximal-Gradient Algorithm for Sparse Signal Recovery

We develop a projected Nesterov’s proximal-gradient (PNPG) approach for sparse signal reconstruction that combines adaptive step size with Nesterov’s momentum acceleration. The objective function that we wish to minimize is the sum of a convex differentiable data-fidelity (negative log-likelihood (NLL)) term and a convex regularization term. We apply sparse signal regularization where the signa...

متن کامل

XII-th International Workshop on Optimization and Inverse Problems in Electromagnetism

We develop a new regularization approach for 3D quantitative microwave tomography, based on a discontinuity adaptive model. The resulting reconstructions from sparse data points for 3D piecewise constant objects are encouraging. The reconstructions of more complex (piece-wise continuous) permittivity profiles from breast phantom data indicate potential for use in biomedical imaging.

متن کامل

Hybrid Multilevel Sparse Reconstruction for a Whole Domain Bioluminescence Tomography Using Adaptive Finite Element

Quantitative reconstruction of bioluminescent sources from boundary measurements is a challenging ill-posed inverse problem owing to the high degree of absorption and scattering of light through tissue. We present a hybrid multilevel reconstruction scheme by combining the ability of sparse regularization with the advantage of adaptive finite element method. In view of the characteristics of dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012